metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Bis(η^5 -isopropyltetramethylcyclopentadienyl)(tetrahydroborato- κ^3H,H',H'')(tetrahydrofuran-O)samarium(III): a lanthanidocene complex with a tridentate tetrahydroborato ligand

Herbert Schumann,* Markus R. Keitsch and Stefan H. Mühle

Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany Correspondence e-mail: schumann@chem.tu-berlin.de

Received 6 July 1999 Accepted 12 October 1999

The lanthanidocene complex $[Sm(BH_4)(C_{12}H_{19})_2(C_4H_8O)]$, (I), shows a distorted tetrahedral arrangement around the central Sm^{III} atom. It consists of two η^5 -isopropyltetramethylcyclopentadienyl ligands, one tetrahydroborato (BH_4^-) ligand bridging *via* H atoms to the lanthanide atom and one coordinating tetrahydrofuran (thf) molecule. The BH₄⁻ unit of (I) coordinates as a tridentate ligand with three bridging H atoms and one terminal H atom $[Sm-B-H4\ 176\ (2)^\circ]$. The η^5 -isopropyltetramethylcyclopentadienyl ligands of this bentsandwich complex $[Cp1-Sm-Cp2\ 133.53\ (1)^\circ$ where Cpdenotes the centroid of the cyclopentadienyl ring] adopt staggered conformations.

Comment

In the course of our work on lanthanidocene complexes for homogeneous catalysis (Schumann *et al.*, 1995), we have

synthesized compound (I), which represents an example of tridentate ligation by the tetrahydroborato ligand.

The Cp-Sm distances of (I) are 2.4888 (2) and 2.4910 (2) Å, the Sm-O bond length is 2.470 (2) Å and the Sm-B distance is 2.624 (3) Å. Our related work on tetra-

Figure 1

The molecular structure of (I) showing 40% probability displacement ellipsoids. H atoms have been omitted for clarity, except for those of the $\rm BH_4^-$ ligand.

hydroborato metallocenes (Schumann et al., 1998) revealed that $(\eta^5 - \text{EtMe}_4 C_5)_2 Y(BH_4 - \kappa^2 H)(\text{thf})$ contains a bidentate BH_4^- ligand with Cp-Y distances of 2.385 (2) and 2.392 (2) Å, a Y–O bond length of 2.389 (2) Å and a Y–B distance of 2.669 (4) Å. The constitution of the Sm^{III} complex (I) and the constitution of the Y^{III} complex differ only regarding the metal centre and the substitution of the cyclopentadienyl rings (ⁱPr instead of Et). The Cp-Sm distance of (I) is about 0.1 Å longer than the Cp-Y distance of the Y^{III} complex, and the Sm-O bond is also 0.081 Å longer than the analogous Y-O bond due to the larger ionic radius of Sm^{III} $[Sm^{III} 1.098 \text{ Å and } Y^{III} 1.04 \text{ Å} (Shannon, 1976)].$ However, the Sm-B distance [2.624 (3) Å] is 0.045 Å shorter than the Y-B distance [2.669 (4) Å] which is, contrary to expectations, based on the ionic radii. This can be explained by the observation that the Sm^{III} complex (I) has a BH₄⁻ ligand with three bridging H atoms whereas the Y^{III} complex contains only two bridging H atoms. In the case of a tridentate complexation of BH_4^{-} , (I), the resulting geometry reduces the Sm-B distance and compensates for the larger ionic radius of Sm^{III}. Generally, for larger lanthanide atoms, tridentate complexation is favoured (Lappert et al., 1983). It was observed earlier that an increased number of bridging H atoms leads to a shorter distance between the two corresponding central atoms (Mayo et al., 1994). In agreement with these results, the single-crystal structure of $(\eta^5-Me_5C_5)_2SmBH_4(thf)$ (Schumann *et al.*, 1998) with two molecules per asymmetric unit and Sm-B distances of 2.58 (2) and 2.62 (2) Å correspond to parameters for tridentate ligation; however, in this structure, the H atoms of the BH₄⁻ moiety could not be located. Tetrahydroborato lanthanide complexes with the larger PrIII and NdIII atoms and the distances Pr-B = 2.757 Å and Nd-B = 2.664 Å were also suggested to have tridentate BH_4^- ligation (Deng *et al.*, 1994). These examples show that the variation of the lanthanide

centre influences the steric behaviour of lanthanidocene complexes, and there are further examples published in the literature (Evans *et al.*, 1999). The geometrical parameters of the three bridging H atoms of (I) indicate that only H2 and H3 are equivalent [B-H2 1.13 (3), B-H3 1.13 (3), Sm-H2 2.51 (3), Sm-H3 2.49 (3) Å, Sm-H2-B 83 (2) and Sm-H3-B 84 (2)°]. The H1 atom is located slightly closer to the Sm atom [B-H1 1.18 (3), Sm-H1 2.36 (3) Å and Sm-H1-B 89 (2)°]. As a result, the Sm-B-H4 angle, involving the terminal H4 atom, is 176 (2)°. As expected regarding the bridging H atoms, the average Y -H distance of 2.35 Å of the complex (η^5 -EtMe₄C₅)₂Y(BH₄- $\kappa^2 H$)(thf) is shorter than the average Sm-H distance of 2.45 Å in (I).

The average Cp-Sm distances of (η^5 -Me₅C₅)₂SmBH₄(thf) [2.456 (8) Å] and of (η^5 -Me₅C₅)₂SmMe(thf) (2.458 Å) (Evans *et al.*, 1988) are slightly shorter than in (I) [2.490 (2) Å], probably due to the larger cyclopentadienyl ring substituent (isopropyl group) of (I).

Experimental

The synthesis of (I) was conducted by the reaction of samarium trichloride and isopropyltetramethylcyclopentadienyl sodium (molar ratio 1:2) refluxing in anhydrous tetrahydrofuran solution for 3 h followed by the addition of one equivalent of NaBH₄ and further refluxing for 3 h yielding 54% of (I). The lanthanidocene complex is air and moisture sensitive. Single crystals were obtained by slow cooling of an *n*-hexane solution to 245 K. ¹H and ¹³C[¹H] NMR spectra were recorded on a Bruker ARX 200.

 $\begin{bmatrix} C_{3}H_{7}(CH_{3})_{4}C_{5}\end{bmatrix}_{2}Sm(BH_{4}-\kappa^{3}H)(thf): ^{1}H NMR (200 MHz, C_{6}D_{6}, p.p.m.): \delta 2.27 (m, 2H, CH), 1.96 (s, 12H, CH_{3}), 0.88 (s, 12H, CH_{3}), -0.30 [s, 12H, (CH_{3})_{2}], -1.36 (s, 4H, thf), -1.97 (s, 4H, thf), -16.36 (s_{br}, 4H, BH_{4}). ^{13}C{}^{1}H} NMR (50.32 MHz, C_{6}D_{6}, p.p.m.): \delta 123.43 (CC_{3}H_{7}), 116.24 (CCH_{3}), 115.76 (CCH_{3}), 65.92 (thf), 32.62 [CH(CH_{3})_{2}], 21.47 (thf), 21.17 [(CH_{3})_{2}], 19.17 (CH_{3}), 18.58 (CH_{3}). \end{bmatrix}$

Crystal data

erystat atala	
$[Sm(C_{12}H_{19})_2(C_4H_8O)(BH_4)]$ $M_r = 563.84$ Orthorhombic, $P_{21}2_12_1$ a = 8.9875 (1) Å b = 15.4363 (1) Å c = 20.0845 (2) Å V = 2786.40 (5) Å ³ Z = 4 $D_x = 1.344$ Mg m ⁻³ Data collection	Mo $K\alpha$ radiation Cell parameters from 8192 reflections $\theta = 1.66-30.45^{\circ}$ $\mu = 2.124 \text{ mm}^{-1}$ T = 173 (2) K Prismatic, orange $0.42 \times 0.26 \times 0.18 \text{ mm}$
Siemens SMART CCD diffract- ometer ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.507, T_{max} = 0.682$ 26 346 measured reflections 8462 independent reflections	7687 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$ $\theta_{max} = 30.45^{\circ}$ $h = -12 \rightarrow 12$ $k = -22 \rightarrow 21$ $l = -28 \rightarrow 25$ Intensity decay: none
Refinement Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.050$ S = 1.005 8462 reflections	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0020P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\text{max}} = 0.064$ $\Delta\rho_{\text{max}} = 0.52 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.90 \text{ e} \text{ Å}^{-3}$

Absolute structure: Flack (1983)

Flack parameter = -0.022(9)

Table 1

Selected	geometric	parameters	(A,	°)
	0	1	< /	

Sm-Cp1	2.4888 (2)	Sm-H3	2.49 (3)
Sm-Cp2	2.4910 (2)	B-H1	1.18 (3)
Sm-O	2.470 (2)	B-H2	1.13 (3)
Sm-B	2.624 (3)	B-H3	1.13 (3)
Sm-H1	2.36 (3)	B-H4	1.01 (5)
Sm-H2	2.51 (3)		
Cp1-Sm-Cp2	133.53 (1)	Sm-H3-B	84 (2)
Cp1-Sm-O	102.45 (5)	Sm-B-H4	176 (2)
Cp2-Sm-O	105.44 (5)	H1-B-H2	99 (2)
Cp1-Sm-B	109.35 (8)	H1-B-H3	117 (2)
Cp2-Sm-B	107.01 (8)	H1-B-H4	112 (3)
O-Sm-B	90.11 (9)	H2-B-H3	106 (3)
Sm-H1-B	89 (2)	H2-B-H4	111 (4)
Sm-H2-B	83 (2)	H3-B-H4	111 (3)

The peaks for the H atoms of the BH_4^- ligand (peak height 0.57 to 0.40 e Å⁻³) were located in the last difference Fourier maps. All H atoms were refined with isotropic displacement parameters. The Flack parameter was based on 3741 Friedel pairs.

Data collection: *SMART* (Siemens, 1995); cell refinement: *SAINT* (Siemens, 1995); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXTL* (Sheldrick, 1997); molecular graphics: *PLATON*99 (Spek, 1990); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft *via* the graduate college in Synthetic, Mechanistic and Reaction Engineering Aspects of Metal Catalysts at the TU Berlin.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1369). Services for accessing these data are described at the back of the journal.

References

- Deng, D., Zheng, X., Quian, C., Sun, J. & Zhang, L. (1994). J. Organomet. Chem. 466, 95–100.
- Evans, W. J., Chamberlain, L. R., Ulibarri, T. A. & Ziller, J. W. (1988). J. Am. Chem. Soc. 110, 6423–6438.
- Evans, W. J., Nyce, G. W., Clark, R. D., Doedens, R. J. & Ziller, J. W. (1999). Angew. Chem. 111, 1917–1919.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Lappert, M. F., Singh, A., Atwood, J. L. & Hunter, W. E. (1983). J. Chem. Soc. Chem. Commun. pp. 206–215.
- Mayo, S. C., Bown, M. & Lloyd, V. K. (1994). Acta Cryst. C50, 367-369.
- Schumann, H., Keitsch, M. R., Demtschuk, J. & Mühle, S. H. (1998). Z. Anorg. Allg. Chem. 624, 1811–1818.
- Schumann, H., Meese-Marktscheffel, J. A. & Esser, L. (1995). Chem. Rev. 95, 865–986.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Structure Determination Software Programs. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1995). SMART and SAINT. Data Collection and Processing Software for the SMART System. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (1990). Acta Cryst. A46, C-34.

All H-atom parameters refined

480 parameters