Crystal Structure

Communications

ISSN 0108-2701

Bis (η^{5}-isopropyltetramethylcyclo-pentadienyl)(tetrahydroborato$\left.\boldsymbol{\kappa}^{3} \boldsymbol{H}, \boldsymbol{H}^{\prime}, H^{\prime \prime}\right)($ tetrahydrofuran-O)samarium(III): a lanthanidocene complex with a tridentate tetrahydroborato ligand

Herbert Schumann,* Markus R. Keitsch and Stefan H. Mühle
Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
Correspondence e-mail: schumann@chem.tu-berlin.de

Received 6 July 1999
Accepted 12 October 1999
The lanthanidocene complex $\left[\mathrm{Sm}\left(\mathrm{BH}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{19}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)\right]$, (I), shows a distorted tetrahedral arrangement around the central $\mathrm{Sm}^{\mathrm{III}}$ atom. It consists of two η^{5}-isopropyltetramethylcyclopentadienyl ligands, one tetrahydroborato $\left(\mathrm{BH}_{4}^{-}\right)$ligand bridging via H atoms to the lanthanide atom and one coordinating tetrahydrofuran (thf) molecule. The $\mathrm{BH}_{4}{ }^{-}$unit of (I) coordinates as a tridentate ligand with three bridging H atoms and one terminal H atom [$\mathrm{Sm}-\mathrm{B}-\mathrm{H} 4176$ (2) ${ }^{\circ}$]. The η^{5}-isopropyltetramethylcyclopentadienyl ligands of this bentsandwich complex $\left[C p 1-\mathrm{Sm}-C p 2133.53(1)^{\circ}\right.$ where $C p$ denotes the centroid of the cyclopentadienyl ring] adopt staggered conformations.

Comment

In the course of our work on lanthanidocene complexes for homogeneous catalysis (Schumann et al., 1995), we have

(I)
synthesized compound (I), which represents an example of tridentate ligation by the tetrahydroborato ligand.

The $C p-\mathrm{Sm}$ distances of (I) are 2.4888 (2) and 2.4910 (2) \AA, the $\mathrm{Sm}-\mathrm{O}$ bond length is 2.470 (2) \AA and the $\mathrm{Sm}-\mathrm{B}$ distance is 2.624 (3) \AA. Our related work on tetra-

Figure 1
The molecular structure of (I) showing 40% probability displacement ellipsoids. H atoms have been omitted for clarity, except for those of the $\mathrm{BH}_{4}{ }^{-}$ligand.
hydroborato metallocenes (Schumann et al., 1998) revealed that $\left(\eta^{5}-\mathrm{EtMe}_{4} \mathrm{C}_{5}\right)_{2} \mathrm{Y}\left(\mathrm{BH}_{4}-\kappa^{2} H\right)($ thf $)$ contains a bidentate $\mathrm{BH}_{4}{ }^{-}$ligand with $C p-\mathrm{Y}$ distances of 2.385 (2) and 2.392 (2) \AA, a Y-O bond length of 2.389 (2) \AA and a $Y-B$ distance of 2.669 (4) \AA. The constitution of the $\mathrm{Sm}^{\text {III }}$ complex (I) and the constitution of the $\mathrm{Y}^{\mathrm{III}}$ complex differ only regarding the metal centre and the substitution of the cyclopentadienyl rings (${ }^{i} \mathrm{Pr}$ instead of Et). The $C p-\mathrm{Sm}$ distance of (I) is about $0.1 \AA$ longer than the $C p-\mathrm{Y}$ distance of the $\mathrm{Y}^{\mathrm{III}}$ complex, and the $\mathrm{Sm}-\mathrm{O}$ bond is also $0.081 \AA$ longer than the analogous $\mathrm{Y}-\mathrm{O}$ bond due to the larger ionic radius of $\mathrm{Sm}^{\text {III }}$ [Sm ${ }^{\text {III }} 1.098 \AA$ and $\mathrm{Y}^{\text {III }} 1.04 \AA$ (Shannon, 1976)]. However, the Sm-B distance [2.624 (3) \AA] is $0.045 \AA$ shorter than the $\mathrm{Y}-\mathrm{B}$ distance $[2.669$ (4) \AA] which is, contrary to expectations, based on the ionic radii. This can be explained by the observation that the $\mathrm{Sm}^{\mathrm{III}}$ complex (I) has a BH_{4}^{-}ligand with three bridging H atoms whereas the $\mathrm{Y}^{\mathrm{III}}$ complex contains only two bridging H atoms. In the case of a tridentate complexation of $\mathrm{BH}_{4}{ }^{-},(\mathrm{I})$, the resulting geometry reduces the $\mathrm{Sm}-\mathrm{B}$ distance and compensates for the larger ionic radius of $\mathrm{Sm}^{\mathrm{III}}$. Generally, for larger lanthanide atoms, tridentate complexation is favoured (Lappert et al., 1983). It was observed earlier that an increased number of bridging H atoms leads to a shorter distance between the two corresponding central atoms (Mayo et al., 1994). In agreement with these results, the single-crystal structure of $\left(\eta^{5}-\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{SmBH}_{4}$ (thf) (Schumann et al., 1998) with two molecules per asymmetric unit and $\mathrm{Sm}-\mathrm{B}$ distances of 2.58 (2) and $2.62(2) \AA$ correspond to parameters for tridentate ligation; however, in this structure, the H atoms of the BH_{4}^{-}moiety could not be located. Tetrahydroborato lanthanide complexes with the larger $\mathrm{Pr}^{\mathrm{III}}$ and $\mathrm{Nd}^{\mathrm{III}}$ atoms and the distances $\operatorname{Pr}-\mathrm{B}=2.757 \AA$ and $\mathrm{Nd}-\mathrm{B}=2.664 \AA$ were also suggested to have tridentate $\mathrm{BH}_{4}{ }^{-}$ligation (Deng et al., 1994). These examples show that the variation of the lanthanide
centre influences the steric behaviour of lanthanidocene complexes, and there are further examples published in the literature (Evans et al., 1999). The geometrical parameters of the three bridging H atoms of (I) indicate that only H 2 and H 3 are equivalent $[\mathrm{B}-\mathrm{H} 21.13$ (3), $\mathrm{B}-\mathrm{H} 31.13$ (3), $\mathrm{Sm}-\mathrm{H} 2$ 2.51 (3), Sm-H3 2.49 (3) $\AA, \mathrm{Sm}-\mathrm{H} 2-\mathrm{B} 83$ (2) and $\mathrm{Sm}-$ H3-B $\left.84(2)^{\circ}\right]$. The H1 atom is located slightly closer to the Sm atom $[\mathrm{B}-\mathrm{H} 11.18$ (3), Sm-H1 2.36 (3) \AA and $\mathrm{Sm}-\mathrm{H} 1-$ B $89(2)^{\circ}$]. As a result, the $\mathrm{Sm}-\mathrm{B}-\mathrm{H} 4$ angle, involving the terminal H 4 atom, is $176(2)^{\circ}$. As expected regarding the bridging H atoms, the average $\mathrm{Y}-\mathrm{H}$ distance of $2.35 \AA$ of the complex $\left(\eta^{5}-\mathrm{EtMe}_{4} \mathrm{C}_{5}\right)_{2} \mathrm{Y}\left(\mathrm{BH}_{4}-\kappa^{2} H\right)($ thf $)$ is shorter than the average $\mathrm{Sm}-\mathrm{H}$ distance of $2.45 \AA$ in (I).

The average $C p-\mathrm{Sm}$ distances of $\left(\eta^{5}-\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{SmBH}_{4}($ thf $)$ [2.456 (8) \AA] and of $\left(\eta^{5}-\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{SmMe}(\mathrm{thf})(2.458 \AA)$ (Evans et al., 1988) are slightly shorter than in (I) [2.490 (2) \AA], probably due to the larger cyclopentadienyl ring substituent (isopropyl group) of (I).

Experimental

The synthesis of (I) was conducted by the reaction of samarium trichloride and isopropyltetramethylcyclopentadienyl sodium (molar ratio $1: 2$) refluxing in anhydrous tetrahydrofuran solution for 3 h followed by the addition of one equivalent of NaBH_{4} and further refluxing for 3 h yielding 54% of (I). The lanthanidocene complex is air and moisture sensitive. Single crystals were obtained by slow cooling of an n-hexane solution to $245 \mathrm{~K} \cdot{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a Bruker ARX 200.
$\left[\mathrm{C}_{3} \mathrm{H}_{7}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{C}_{5}\right]_{2} \mathrm{Sm}\left(\mathrm{BH}_{4}-\kappa^{3} H\right)$ (thf): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, p.p.m.): $\delta 2.27(m, 2 H, \mathrm{CH}), 1.96\left(s, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 0.88\left(s, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$, $-0.30\left[s, 12 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}\right],-1.36(s, 4 \mathrm{H}$, thf $),-1.97(s, 4 \mathrm{H}$, thf $),-16.36$ $\left(s_{b r}, 4 \mathrm{H}, \mathrm{BH}_{4}\right) \cdot{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($50.32 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, p.p.m.) : $\delta 123.43$ $\left(\mathrm{CC}_{3} \mathrm{H}_{7}\right), 116.24\left(\mathrm{CCH}_{3}\right), 115.76\left(\mathrm{CCH}_{3}\right), 65.92$ (thf), 32.62 $\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 21.47$ (thf), $21.17\left[\left(\mathrm{CH}_{3}\right)_{2}\right], 19.17\left(\mathrm{CH}_{3}\right), 18.58\left(\mathrm{CH}_{3}\right)$.

Crystal data

$\left[\mathrm{Sm}\left(\mathrm{C}_{12} \mathrm{H}_{19}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)\left(\mathrm{BH}_{4}\right)\right]$
$M_{r}=563.84$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.9875$ (1) \AA 。
$b=15.4363$ (1) \AA
$c=20.0845$ (2) \AA
$V=2786.40(5) \AA^{3}$
$Z=4$
$D_{x}=1.344 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART CCD diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.507, T_{\max }=0.682$
26346 measured reflections
8462 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.050$
$S=1.005$
8462 reflections
480 parameters
All H -atom parameters refined

Mo $K \alpha$ radiation

Cell parameters from 8192 reflections
$\theta=1.66-30.45^{\circ}$
$\mu=2.124 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Prismatic, orange
$0.42 \times 0.26 \times 0.18 \mathrm{~mm}$

7687 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=30.45^{\circ}$
$h=-12 \rightarrow 12$
$k=-22 \rightarrow 21$
$l=-28 \rightarrow 25$
Intensity decay: none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0020 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.064 \\
& \Delta \rho_{\max }=0.52 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.90 \text { e } \AA^{-3} \\
& \text { Absolute structure: Flack }(1983) \\
& \text { Flack parameter }=-0.022(9)
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

Sm-Cp1	$2.4888(2)$	$\mathrm{Sm}-\mathrm{H} 3$	$2.49(3)$
$\mathrm{Sm}-\mathrm{Cp} 2$	$2.4910(2)$	$\mathrm{B}-\mathrm{H} 1$	$1.18(3)$
$\mathrm{Sm}-\mathrm{O}$	$2.470(2)$	$\mathrm{B}-\mathrm{H} 2$	$1.13(3)$
$\mathrm{Sm}-\mathrm{B}$	$2.624(3)$	$\mathrm{B}-\mathrm{H} 3$	$1.13(3)$
$\mathrm{Sm}-\mathrm{H} 1$	$2.36(3)$	$\mathrm{B}-\mathrm{H} 4$	$1.01(5)$
$\mathrm{Sm}-\mathrm{H} 2$	$2.51(3)$		
$C p 1-\mathrm{Sm}-\mathrm{Cp} 2$	$133.53(1)$	$\mathrm{Sm}-\mathrm{H} 3-\mathrm{B}$	$84(2)$
$C p 1-\mathrm{Sm}-\mathrm{O}$	$102.45(5)$	$\mathrm{Sm}-\mathrm{B}-\mathrm{H} 4$	$176(2)$
$C p 2-\mathrm{Sm}-\mathrm{O}$	$105.44(5)$	$\mathrm{H} 1-\mathrm{B}-\mathrm{H} 2$	$99(2)$
$C p 1-\mathrm{Sm}-\mathrm{B}$	$109.35(8)$	$\mathrm{H} 1-\mathrm{B}-\mathrm{H} 3$	$117(2)$
$C p 2-\mathrm{Sm}-\mathrm{B}$	$107.01(8)$	$\mathrm{H} 1-\mathrm{B}-\mathrm{H} 4$	$112(3)$
$\mathrm{O}-\mathrm{Sm}-\mathrm{B}$	$90.11(9)$	$\mathrm{H} 2-\mathrm{B}-\mathrm{H} 3$	$106(3)$
$\mathrm{Sm}-\mathrm{H} 1-\mathrm{B}$	$89(2)$	$\mathrm{H} 2-\mathrm{B}-\mathrm{H} 4$	$111(4)$
$\mathrm{Sm}-\mathrm{H} 2-\mathrm{B}$	$83(2)$	$\mathrm{H} 3-\mathrm{B}-\mathrm{H} 4$	$111(3)$

The peaks for the H atoms of the $\mathrm{BH}_{4}{ }^{-}$ligand (peak height 0.57 to $0.40 \mathrm{e} \AA^{-3}$) were located in the last difference Fourier maps. All H atoms were refined with isotropic displacement parameters. The Flack parameter was based on 3741 Friedel pairs.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXTL (Sheldrick, 1997); molecular graphics: PLATON99 (Spek, 1990); software used to prepare material for publication: SHELXTL.

This work was supported by the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft via the graduate college in Synthetic, Mechanistic and Reaction Engineering Aspects of Metal Catalysts at the TU Berlin.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1369). Services for accessing these data are described at the back of the journal.

References

Deng, D., Zheng, X., Quian, C., Sun, J. \& Zhang, L. (1994). J. Organomet. Chem. 466, 95-100.
Evans, W. J., Chamberlain, L. R., Ulibarri, T. A. \& Ziller, J. W. (1988). J. Am. Chem. Soc. 110, 6423-6438.
Evans, W. J., Nyce, G. W., Clark, R. D., Doedens, R. J. \& Ziller, J. W. (1999). Angew. Chem. 111, 1917-1919.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Lappert, M. F., Singh, A., Atwood, J. L. \& Hunter, W. E. (1983). J. Chem. Soc. Chem. Commun. pp. 206-215.
Mayo, S. C., Bown, M. \& Lloyd, V. K. (1994). Acta Cryst. C50, 367-369.
Schumann, H., Keitsch, M. R., Demtschuk, J. \& Mühle, S. H. (1998). Z. Anorg. Allg. Chem. 624, 1811-1818.
Schumann, H., Meese-Marktscheffel, J. A. \& Esser, L. (1995). Chem. Rev. 95, 865-986.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Structure Determination Software Programs. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1995). SMART and SAINT. Data Collection and Processing Software for the SMART System. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

